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Low-frequency electrostatic waves in self-gravitating dusty plasmas with dust-ion collisions
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The influence of dust-ion collisions on low-frequency modes in a self-gravitating dusty plasma is studied.
The stability of the system is easily determined using elementary principles of rootlocus theory. It shows that
collisions between ions and dust grains do not change the criteria for gravitational collapse at any value of their
collision frequency, but diminish the growth rate of unstable dusty plasmas. Moreover, the rootlocus plots
visualize qualitatively the evolution of the real frequencies and damping decrements of the dust-acoustic and
ion-acoustic modes as the dust-ion collision frequency increases.
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I. INTRODUCTION IIl. GENERAL FORMALISM

Dusty plasmas are ensembles of traditional plasma com- The model we investigate is a collisional dusty plasma
ponents and dust particles. In space applications these dusbnsisting of electrons, ions, and charged dust grains where
particles display an incredible variety in size, shape, andnly dust-ion collisions are retained. The electrostatic waves
composition, thus making the features of dusty plasmasinder consideration propagate along theaxis and their
much more complex than those of traditional electron-ionwave period is assumed to differ considerably from the dust
plasmas. The surge of interest in dusty plasmas is partly dugharge fluctuation time, so that we can treat the dust charges
to the presence of ultralow-frequency wavés-4], arising  as effectively constant, also because we are not considering
as a consequence of the very heavy nature of the chargddo large charges for which crystalline effects might come
dust grains. This research area was stimulated by the predimto play. The phase speed of the waves is much smaller than
tion of the dust-acoustic wave by Raval.[1], just over a the thermal speeds of the electrons and therefore the elec-
decade ago. The massive dust grains also induce selfrons are treated as being Boltzmann distributed:

gravitational interactions that modify collective modes and ey
lead to a gravitational collapse of sufficiently large astro- Ne= neoeXF{—E ) (1)
physical dusty plasmds)]. kgTe

We now study low-frequency electrostatic waves in self- ] ] ] o )
gravitating dusty plasmas with charged dust grains. EarliePur basic equations further include the continuity equations

work in self-gravitating dusty plasmas usually relied upon a n 9

collisionless mode[5], while other authors included colli- W_’_ a_x(”‘vi)zo’ (2
sions but neglected self-gravitatidg—10]. On the other

hand, Shukla and Verhegst1] studied self-gravitating col-

lisional dusty plasmas but neglected the possibly important ﬂJr i(n )=0 3)
ion inertia. The model used in our paper deals with a dusty gt ox. v

plasma without neutrals and only retains the dust-ion colli-
sions, as this is then the dominant collision mechanism. Thiand the equations of motion for the ions and dust particles,
model proves suitable for application of the rootlocus

2
method, a mathematical tool for stability analysis that also Vi i | Gi dYe Y Ui N =
. . . . . . Uj + +Vid(Ui Ud)—o,
allows a visual inspection of the influence of dust-ion colli- dt X m; dx X n; ox
sions on the ion-acoustic and dust-acoustic modes. (4)
The paper is organized as follows. In Sec. Il the basic
equations are rgcalled; ngxt, in Sgc. 1l we der?v_e the general o g  Qq e Jg U12'd g
dispersion relation and discuss it for the collisionless limit -ty ottt
L . . ot X My oX X Ng JX
and for small collision frequencies. In Sec. 1V, the stability
analysis is given and the rootlocus method is applied, in + vgi(vg—v;)=0, 6

order to show the modification of the ion- and dust-acoustic
modes due to inclusion of the collisional mechanism bewhere
tween the ions and charged dust grains. At the end, Sec. V
contains our conclusions. _ MiNip

= 14
MyNgo

Vi id - (6)

*Present address: Max-Planck Institute for Extraterrestrial Physbifferent species are labeled with indicas their densities,
ics, Postfach 1312, D-85741 Garching, Germany. fluid velocities, charge, and mass are, respectively, denoted
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byn,,v,,q,, andm,. The thermal velocities enter as,

while v,y and vy; are the collision frequencies. The electric

¢ and gravitational potentialgyg can be found from the
Poisson equations

Pye 1
PR S_O(nee_niqi_nde)1 (7
52
lﬂzG =4’7TG(mini+mdnd). (8)
IX

Ill. DISPERSION RELATION
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P(0,00=[Q%+Aw]+ ki~ 0l
X[Qz-f—AwFZ)i-f-kzv%i—wﬁi]
~[Awpiwpg— ®5i0;4]%, (13

and since naturally;;<w;q, wWe can calculaté\ as

NigTi

NaoTa

NioZ;

2
on?
NgoZg

A=w§d—kzv$d(l+ )—Awgd

Here the following equalities are validfor negatively
charged grains viz., NjpZ;=nNgy+ N4oZq>NgoZq and nioT;
>nyoT4. Further on, the full dispersion relatiqd?) is de-

Assuming the perturbations to be proportional to expnoted asP({),r;4)=0.

[ —iwt+ikx], we obtain after linearizing Eq$l)—(8) the dis-
persion relation

2

Wi
2

W34

w(w-i—ivid ) —kzv$d+w§d—Awgd

X[a)(w+iVid)—kzv-2|-i+w§i—Awf,i]

2
(ON]

Aw jw d_inde+inid_
pI=p w3g

9

For convenienceA is an abbreviated notation and stands for

A=| 1+

1 -1
mse) | o

Here )\Da: (SOkBTa/naoqzzy) 1/2! Wpa™ (nan(zy/SOma) 1/2’
and w;,=(47Gn,m,)Y? are, respectively, the Debye
length, the plasma, and Jeans frequencies of specié®or

For dusty plasmas with very heavy dust particles so that
(1+nioZi IngoZg) wpg<wyq is satisfied, it shows thad is
always positive. On the other hand, for lighter dust species
that satisfy (H n;oZ;/NgoZq) 0pg™> w34, the sign of A de-
pends on the wave number. For a dusty plasma with cold
dust particles that follow the latter inequality, we introduce
the wave numbek, as

2
W34

ki =

(15

2
2 2 2
) Wpg™ Wyq ADe

NioZ;
1+
( NgoZg

and we see thaA is negative fork>k, and positive fork
<k, . We assumé&?\3=k?\3,<1, and hence it is clear that
kya<wjg/Cqa, With Ccya=Apw,q being the dust-acoustic
speed. It will become clear that the dust-ion collisions exert a
different influence on wave number regions separatekl,hy

A. Collisionless dispersion relation

later use, we also introduce the global plasma Debye length The discriminant ofP(2,0)=0, the collisionless disper-

Ap2=Npi+\p?. For cold dust without dust-ion collisions
and neglectingwj;, Eq. (9) is equal to Eq(27) of Meuris

et al. [12], but without streaming. Without self-gravitation,

with k?\3,<1 andZ;=1, q4=—€Zy, Eq.(9) can be writ-
ten as

4_L2r\2 (2 4 2 29 2., 1 4v2 2 2
0" =K\ pe(wpi+ wpg) Fo i@+ KNGewpav T

ez -0

(11)

2 2 2
UTi+)\Dewpi( 1-

+ivdiw( w?—k?

which equals Eq(21) of D’Angelo [6] if one sets therer

sion relation, is
D* =[A(wpi— 0pd) + K2(vFi—vF) — (0F— 03y
+4(Awpiwpd—w3iw3d)220, (16)

implying that both roots if)?, viz., ri, andrg,,

1
Ma,da= — E[A(wyzsi + wﬁd) +K2(vE vy — (0f+ 0l

+\D*],

are real; herer,;, corresponds to the- sign andr 4, with the

(17

= anda=0. In the latter paper, figures of growth rates for — sign. Obviously ri;>ry, and therefore the roots of
different plasma and dust parameters can be found. WheR(w,0)=0 can be approximated as

substitutingw =i () in the dispersion relatio(®), we obtain a
quartic equation with real coefficients, viz.,
P(Q,0)+ v;gQ[Q2—A]=0, (12

where the biquadratic equatid®((2,0)=0 is the collision-
less dispersion relation

Ma=—Awy— k07, (18)

Fga=w3q—k3(Ca,+v2y), (19

and this makes it clear that, andry, indeed represent the
ion-acoustic and the dust-acoustic branches, respectively, of
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the dispersion relation. While, is always negative, the sign requires a mathematical solution for infinite collision fre-

of r 4, Switches at the critical wave number guencies. We emphasize that in these equations, the collision
frequency is treated as a purely mathematical parameter. Af-

, 05y 0l ter all, the mathematical solutions for very large collision

Ker= = (20 frequencies may not be physically meaningful, as in that

2 2 27
CdatVTd  Cda situation our basic equations are not valid anymore. How-
thus, we have 4,<0 if k=k,, and vice versa 4,>0 if k ever, it is imperatiyg to realize tha_t the validity for realistic
<k [3,5]. values of the collision frequency is not a_lffected_when we

extend the use of the parametgg beyond its physical rel-
vance. Basically, we calculate the solutions for all values of
the collision frequency; afterwards, the solutions for very
large v;y can be discarded.

We pay extra attention to a dusty plasma with negligible
self-gravitational interactions, and in that special case w
obtain

lia-N4a= k2[k20_2|_iv_|2_d+ A(wgiv$d+ (x)gdl)-|2—i)]20 (21)

. . _ IV. ROOTLOCUS METHOD APPLIED ON
and we can conclude that in this casg=0 holds. STABILITY ANALYSIS

We now rewrite Eq(12) in the form
5 ) 5 Equation(22) is a full quartic equation i) that also
(Q°=ria) (Q°=Trga) T g (Q°=A)=0, (22)  contains a parameter,y and has trivial solutions(@, viq)
. . . =(0,2), (£iV[ria],0), (£rga0), and ¢ A,»). Note
,‘3}5 Itt IS Tc[)\rg colmpact anqt_pract:)tlcal for further analysis. Nou?hat some of these trivial roots il can be purely imaginary
allda IS always positive because but there are no other purely imaginary roots for finite, non-
1 zero values of the collision frequency, except for the special
raa— A>5[VD* — 03— Al — i) k(v —v3)]>0.  casesy,=—A>0 andry,=0. Becausdriy|>|rq,|, we can
also see that

(23)
B. Small and large collision frequencies Q==V"Tia, (28
Starting from Eq.(22), series expansions ing for riy,  with corresponding
r4a» @and A can easily be determined. For smaly, we
calculate forQ=\r;, up to first order, fiatTaa

Vid—z A \/_riaZZ\/_ria, (29)
1a

vig (ria—A)

v
Q:\/E_7(r__—r)2\/ﬁ_?'d, (24)
la da is a real and negative solution of the dispersion relation;
because|r 4o .| A|<|ria]. Similarly, for Q= g, we ap- Mmoreover, itis a double root.
proximate to first order Since Eq.(22) can be written a(£2)+rigN(Q)=0,
whereN({2) andD({2) are polynomials in the complex vari-
vig (rga—A) Vig (Frga—A) able() and with real coefficients, one can always make a so
Q=Vrga~ 2 (rga—Ta) Vroat 2t (29 called rootlocus plof13]. This plot shows how the roots of
o “ the dispersion relatiof22) move in the complex plane asy
and we can see that the second term on the right-hand sideiiscreases. The roots ®f()) are called the zeros, while the
always real. roots of D({2) are called poles. Becausg, is a positive
For negativeA the roots(in Q) of P({),+x)=0 are parameter, the loci of the solutions of the dispersion relation
ii\/E| and 0. Here, we can expand for largg and so Wil originate in the poles and terminate in the zeros if one
calculate for2 =i [ A[ the first terms of the series expansion increasesviq, starting from zero towards infinity. Without
in the small parameter,,*, actually plotting the rootlocus, we can already derive some
of its properties by just studying the rational function
) (riaF|AD(rga+|AD . Fia(rgat|A]) N(Q)/D(Q).
Q=i|A[+ - |21|}.d|KT 14| =i JJA]+ % The coefficients of Eq22) are real, and this is eventuated
' ' (26) in one of the general properties of rootlocus plots; viz., they
are symmetrical with respect to the real axis.

The expressions for positivA are obviously very similar Stable solutions requir@ to have a negative real part as
and not given here. Finally, fal =0 we obtain w=1iQ; therefore, all roots located in the right half of the
complex plane can be recognized as unstable solutions.
_Tialda For the dispersion relatiof22), the rootlocus plot will
T oA 27) cross the imaginary axis only in poles or zeros because for

vig#0 and v,y # > there are no purely imaginary roots, as
Equations(26) and (27) are mentioned here because thementioned before. This is an important remark for the deter-
semianalytical method, which is used in the next sectionmination of the stability of the system.
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We can easily deduct which parts of the real axis corre- TABLE I. Classification for different wave number regions.
spond with sets of solutiong)X, v;4) of Eq.(22) and are thus

part of the rootlocus plot. Therefore we rewri@2(€) k - Ka - Ker
+VidN(Q):O as A + 0 _ _ _
] Mda + + + 0 -
7= ,(Q+7) Case C B A
1+viy=—————=0, 30
TP (@ p) 30
g p
wherep; stand for the poleg; for the zeros, ang andq for _ E S o
the number of poles and zeros, respectively. Suppose a cer- Os(Pi) w (2l +1)7T+,Zl (Zj= P .21 (Pi=Pw |
ik

tain Q) is real; then,

p

174 (2+p) @+ 17+ (pi-20-

1
- T, O(z)=—
= <0. k .
Hiqzl(Q'i‘Zi) Vid (3D) ¢ M i:

q
21 (Zj_Zk)],
k

Because the collision frequency is real and positive, we cawhereu stands for the multiplicity of the respective pole or
calculate the complex phase angles of both sides of the latteero. That the plots indeed start and terminate horizontally

equation, yielding can be independently checked, starting from Eg4)—(27).
There is another class of important points needed to de-
p q termine a rootlocus unambiguously; so-called breakaway

> arg Q+p;)— > argQ+z)=2l+L) 7. (32 points are points on the real axis where two or more branches

i=1 i=1 of the rootlocus depart from or arrive at. For the dispersion
relation (22) there always is at least one breakaway point,

Note thatQ is chosen to be real herg, is complex, and  Viz., @=—\[r;,|. More details about breakaway points are

arg(Q+ p;) stands for the angle between the horizontal axisgiven in the Appendix.

and the line segment that conneetp; and ). In that geo- For cold dust, we can make a classification for different

metric interpretation it is easy to see that rpallocated to ~ configurations, depending on the signs ofandry,. For

the left of Q have no contribution to the left-hand side of Eq. every configuration the polesiy/|ri,| are located on the

(32); equivalently, it can be seen that a real ppjdocated to  imaginary axis and the origin is a zero. Note that a situation

the right ofQ has a contributionr. However, complex con- With positive A and negativer 4, is impossible within the

jugate polesp; andp; have no contribution to the left-hand assumptiorkhp<1. After all, negativer 4, requiresk>kg,

side of Eq.(32) at all, because their phase angles cancel eacAnNd thus w;q/wpg<khp<1. Therefore a positive\ de-

other out. The interpretation for the zeros is exactly the samenandsk<k, , but this is impossible sincle>k¢, >k .

and we can conclude that points of the rootlocus on the real For dusty plasmas where the electromagnetic interactions

axis lie to the left of an odd number of finite poles and zerosare dominant, i.e., (¥njoZ;/NgoZy) wpe™>wyq, there are

Phrased equivalently, an interval on the real axis belongs to #iree regions in wave number space, separated bynd

rootlocus plot if the sum of the number of poles, located tok,, as displayed in Table I. We repeat tha{<k., as

the right of this interval, and the number of zeros, each als@roved earlier. On the other hand, for dusty plasmas where

located to the right of this interval, is odd. self-gravitational  interactions  dominate, i.e., (1

Working with the same nomenclature it can be proved thatt NjoZ;i /NgoZg) pg< @;4, the analysis is independent of the

there aren—m asymptotes with center, making an anglee ~ wave number and corresponds with case C.

with the horizontal axis, where We can qualitatively describe how the magnitude of the

dust-ion collision frequency affects the real frequency and

damping decrement of the Jeans and ion-acoustic modes by

2P~ 2z lotting the rootlocus in the possible configurati
o=— — (33 plotting the rootlocus in the possible configurations.
P—q
A. A<0, r4,<0
21+ 1) o .
= ————, (34) This situation corresponds to dusty plasmas for which
P—q self-gravitational interactions do not prevail, viz., (1

+NioZ; INgoZyg) wpg™> w34, and for wave numbers exceeding
and thus for Eq(22) the negative real axis will be the only the critical wave numberk>k;,=w;q/Cq,. The second
asymptote. condition is stronger than the first condition because, if
Furthermore, it can be proved that the plot will be hori- w;4/w,q<kAp<1, the first condition is automatically satis-
zontal in the poles and zeros. The starting angles in the poldged. We can conclude that this category is the category of
(6s) and the ending angles in the zerag) can be calcu- dusty plasmas with negligible self-gravitational interactions,
lated, using the formulas i.€., wyg<wpq-
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12
X IriaI

m(Q)=-Re(®)

A

Il

\\\\‘I Re(Q)=Im(®)
D

A

FIG. 1. Rootlocus plot for wave numbeks>w;q4/Cys. The
crosses and circles correspond to, respectively, the poles and zeros FIG. 2. Rootlocus plot for dusty plasmas with,y> ;4 and
of Q(O2—A)/(Q%—r;,)(Q%—ry,), whereas the arrows are di- corresponding to wave numbekg<k<Kk,.
rected towards larger collision frequencies.

modes; subsequently, one of the ion-acoustic modes becomes

For this case, all poles and zeros of E&2) are located completely damped while one of the dust-acoustic modes
on the imaginary axis and alternate because herg<<|A| also vanishes as it becomes zero. The remaining dust-
<|ria|, as can be seen in E(RJ). It can easily be seen now acoustic and ion-acoustic modes couple and leave the real
that the entire negative real axis is part of the rootlocus plotixis again for high collision frequencies. If one plots discrete
and it also can be proved that the rootlocus plot leaves fronpoints, corresponding to fixed collision frequencies, one can
the poles perpendicularly to the imaginary axis and directegee that initially(for collision frequencies that are not too
towards the left half of the complex plane. Equivalently it large the modes do not deviate much from their respective
can be shown that the rootlocus plot arrives in the zerosgollisionless limits.
perpendicular with the imaginary axis and coming from the
left half of the complex plane. As stated earlier, the plot B. A<O, ry;>0
cannot cross the imaginary axis except in the poles or zeros; This situation also corresponds to dusty plasmas for
therefore, this configuration is always stable, since the root- hich_self- itation i tph ina th y P hand
locus plot is entirely located in the left half of the complex which sefl-gravitation IS not ‘having the upper hand or,

plane. This confirms the results of D’Angdl6], albeit in a equivalently, (¥ njoZ;/NgoZg) @pg>wyq, but now corre-
more general way. sponds to the wave number regikR<k<<k., .

Note that statements about the stability of the system have " this configuration there are two poles Qr_da) located
been made with a minimal use of rootlocus theory and withOn the real axis; the remaining two poles: iIrial) are
out the need of a plot. It is only for a qualitative determina-located on the imaginary axis as are all zeros=(Q[[A]).
tion of the real frequencies and damping decrements that &he interval§ —oo,—\rg,] and[0,yr 4,] of the real axis are
rootlocus plot has to be made. Qualitative and quantitativd®@rt of the rootlocus plot; obviously, this means that this
results can be found easily and rapidly for numerical ex-configuration is always unstable.
amples, using existing routines, but analytical expressions The plot leaves the polesi\/r;,[ towards the left and
can also be dealt with in a qualitative way, as is shown furperpendicular to the imaginary axis, and arrives in the zeros
ther on. +iJA] from the left and also perpendicular with the imagi-
For configurations withr 4,| <|A|<9|r 4a|, the rootlocus nary axis. Asv;q increases, the unstable dust-acoustic root
can have multiple possibilities depending on the precise/r 4, moves over the real axis towards the origin and hence
magnitude of the parameters; i.e., the number of breakawaipstability remains, but the growth rate diminishes.
points cannot easily be determined without additional speci- The rootlocus plot of dusty plasmas in this category is
fication of the magnitudes af,, rq,, andA, and therefore shown in Fig 2. It shows that the growth rate of the unstable
a general plot is not given. For configurationg §|<|A|,  Jeans mode indeed reduces with increasing collision frequen-
there are three breakaway points and the rootlocus plot isies; the stable Jeans mode and the ion-acoustic modes are
shown in Fig. 1. Details about the determination of the num-also damped initially while their real frequency diminishes.
ber of breakaway points are given in the Appendix. For larger collision frequencies the ion-acoustic roots be-
Figure 1 shows that dust-acoustic and ion-acoustic modesome zero-frequency modes and there is bifurcation on the
initially reduce in real frequency and become damped. As theeal axis; one mode becomes completely damped while the
collision frequency increases they become zero-frequencgther couples with the stable dust-acoustic mode and both

026407-5



JACOBS, YAROSHENKO, AND VERHEEST PHYSICAL REVIEW E6, 026407 (2002

within a collisionless model. We studied the modifications
for the stability analysis if dust-ion collisions are included.
We also illustrate qualitatively how the real frequency and
damping decrement of the ion-acoustic and Jeans modes
change over the spectrum of possible collision frequencies,
using a semianalytical method called rootlocus. This method,
often used in control engineering, proves to be an enlighten-
ing tool for the stability analysis of our model as it can
produce physically meaningful graphs.

It shows that dust-ion collisions reduce the growth rate of
the unstable Jeans dust mode but can never overturn the
gravitational instability.

On the other hand, the ion-acoustic modes are also
damped and can become zero-frequency modes when the
collision frequency exceeds a certain threshold. As the inclu-
sion of self-gravitational effects hardly modifies the ion-
acoustic modes, the results of Iviet al. [10] are partly
reproduced and in some way generalized for the ion-acoustic
branch.

FIG. 3. Rootlocus plot for dusty plasmas with dominating self-

gravitational effects and also for the wave number redierk, in ACKNOWLEDGMENTS
dusty plasmas with relatively light dust species,f>w,q). G.J. and F.V. acknowledge a research grant from the Bij-
eventually leave the real axis again. zonder Onderzoeksfonds of the Universiteit Gent. V.V.Y.

thanks the “Onderzoeksfonds K.U. Leuven” for support

C.A>0,r,.>0 (Grant No. F/00/070
. » Lda

There are two different classes of dusty plasmas residing
in this category. On the one hand, dusty plasmas with rela- APPENDIX: BREAKAWAY POINTS
tively light dust species that obey {In;oZ;/nyoZq)wpg ) o
>w;q and in a situatiork<k, . On the other hand, dusty ~ Breakaway points; of multiplicity u (« branches depart
plasmas where self-gravitation predominates, i.e., (12ndu branches arriveare formally calculated as solutions
+NipZ; INgoZg) wpa<wyq4, Since kAp<1 the inequalityk  Of
<kKer=wyq/(wpghp) is always satisfied for this case. Note
that the quantitk, is meaningless in the latter situation/as .
is positive over the entire wave number range. d N() _0 Vi1 1 AL
Both classes have qualitatively similar plots. The zeros d0i D(Q)| =5 e (A1)
are located on the real axis as are the pdle§ 4,. The poles by
are always largein absolute valuethan the zeros since Eq.

(23) demonstrates\ <|r;,|,rq44. The real intervald —=, hi . _

ch of course still obeyD (Q) + v;jyN()=0. Breakaway
—+rqgal, [—VA,Q], and[ VA, rqa] belong to the rootlocus wh : : - :
plot, rendering also this configuration unstable. Again, start-pomtS b; of the dispersion relatio22) are hence solutions
ing and ending angles are perpendicular to the imaginar
axis; the larger poles leave toward the left half of the com-

plex plane, while the smaller ones arrive along the axis in Q8+ (1ot T ga— 3A) Q4+ [A(r 2+ T ga) — 3Fal 4a] Q2

JA.
The rootlocus plot is shown in Fig. 3. The growth rate of Frial gaA = Q%+ 1, Q% ri,(A—3rg) Q2
the unstable Jeans mode also reduces until it reaches the pole _
JA. Here one of the ion-acoustic modes will also couple +rialgaA =0, (A2)

with the stable dust-acoustic mode while the other is wiped
out. Note that the only difference with the previous case is, . : L

the evolution for large collision frequencies and the evoluﬁ'\'Ith corresponding collision frequency
tion of the unstable root. Namely, in this class of dusty plas-
mas the unstable root improves but will never be stable, as

viq increases. =

42
b =B (ria+rga) *rialga
Vid= —

bi(b?—A)

(A3)

V. CONCLUSIONS

The stability of longitudinal disturbances in self- There is always one negative breakaway point, approximated
gravitating dusty plasmas has been investigated previouslysing the obvious inequalitieg,,A<r;,, as
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(b1, vig) = (= V=Tia,2V—Tia); (r4a— b3

Vig="lia,— 5 -
this is the only breakaway point for cageif |A|<9|rq,. by a(b2 5= A)
Other possible breakaway points drgandbs, where
1 . .
Q=bys=— \/§[3fda—/\i VA =142 (A=9rg0)], For case4 (if 9|rq, <|A|), B, andC, b, is indeed a second

breakaway point; additionally, for cas8g9|ry,/ <|A|) and
with corresponding real and positive collision frequencies © Ps represents a third breakaway point.
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