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Low-frequency electrostatic waves in self-gravitating dusty plasmas with dust-ion collisions
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The influence of dust-ion collisions on low-frequency modes in a self-gravitating dusty plasma is studied.
The stability of the system is easily determined using elementary principles of rootlocus theory. It shows that
collisions between ions and dust grains do not change the criteria for gravitational collapse at any value of their
collision frequency, but diminish the growth rate of unstable dusty plasmas. Moreover, the rootlocus plots
visualize qualitatively the evolution of the real frequencies and damping decrements of the dust-acoustic and
ion-acoustic modes as the dust-ion collision frequency increases.
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I. INTRODUCTION

Dusty plasmas are ensembles of traditional plasma c
ponents and dust particles. In space applications these
particles display an incredible variety in size, shape, a
composition, thus making the features of dusty plasm
much more complex than those of traditional electron-
plasmas. The surge of interest in dusty plasmas is partly
to the presence of ultralow-frequency waves@1–4#, arising
as a consequence of the very heavy nature of the cha
dust grains. This research area was stimulated by the pre
tion of the dust-acoustic wave by Raoet al. @1#, just over a
decade ago. The massive dust grains also induce
gravitational interactions that modify collective modes a
lead to a gravitational collapse of sufficiently large ast
physical dusty plasmas@5#.

We now study low-frequency electrostatic waves in se
gravitating dusty plasmas with charged dust grains. Ear
work in self-gravitating dusty plasmas usually relied upon
collisionless model@5#, while other authors included colli
sions but neglected self-gravitation@6–10#. On the other
hand, Shukla and Verheest@11# studied self-gravitating col-
lisional dusty plasmas but neglected the possibly impor
ion inertia. The model used in our paper deals with a du
plasma without neutrals and only retains the dust-ion co
sions, as this is then the dominant collision mechanism. T
model proves suitable for application of the rootloc
method, a mathematical tool for stability analysis that a
allows a visual inspection of the influence of dust-ion co
sions on the ion-acoustic and dust-acoustic modes.

The paper is organized as follows. In Sec. II the ba
equations are recalled; next, in Sec. III we derive the gen
dispersion relation and discuss it for the collisionless lim
and for small collision frequencies. In Sec. IV, the stabil
analysis is given and the rootlocus method is applied,
order to show the modification of the ion- and dust-acou
modes due to inclusion of the collisional mechanism
tween the ions and charged dust grains. At the end, Se
contains our conclusions.

*Present address: Max-Planck Institute for Extraterrestrial Ph
ics, Postfach 1312, D-85741 Garching, Germany.
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II. GENERAL FORMALISM

The model we investigate is a collisional dusty plasm
consisting of electrons, ions, and charged dust grains wh
only dust-ion collisions are retained. The electrostatic wa
under consideration propagate along thex axis and their
wave period is assumed to differ considerably from the d
charge fluctuation time, so that we can treat the dust cha
as effectively constant, also because we are not conside
too large charges for which crystalline effects might com
into play. The phase speed of the waves is much smaller
the thermal speeds of the electrons and therefore the e
trons are treated as being Boltzmann distributed:

ne5ne0expS ecE

kBTe
D . ~1!

Our basic equations further include the continuity equatio

]ni

]t
1

]

]x
~niv i !50, ~2!

]nd

]t
1

]

]x
~ndvd!50, ~3!

and the equations of motion for the ions and dust particl
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~4!
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1ndi~vd2v i !50, ~5!

where

ndi5
mini0

mdnd0
n id . ~6!

Different species are labeled with indicesa, their densities,
fluid velocities, charge, and mass are, respectively, den
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by na , va , qa , andma . The thermal velocities enter asvTa
while n id andndi are the collision frequencies. The electr
cE and gravitational potentialscG can be found from the
Poisson equations

]2cE

]x2
5

1

«0
~nee2niqi2ndqd!, ~7!

]2cG

]x2
54pG~mini1mdnd!. ~8!

III. DISPERSION RELATION

Assuming the perturbations to be proportional to e
@2ivt1ikx#, we obtain after linearizing Eqs.~1!–~8! the dis-
persion relation

FvS v1 in id

vJi
2

vJd
2 D 2k2vTd

2 1vJd
2 2Avpd

2 G
3@v~v1 in id!2k2vTi

2 1vJi
2 2Avpi

2 #

5FAvpivpd2vJivJd1 ivn id

vJi

vJd
G2

. ~9!

For convenience,A is an abbreviated notation and stands

A5S 11
1

k2lDe
2 D 21

. ~10!

Here lDa5(«0kBTa /na0qa
2)1/2, vpa5(na0qa

2/«0ma)1/2,
and vJa5(4pGnama)1/2 are, respectively, the Deby
length, the plasma, and Jeans frequencies of speciesa. For
later use, we also introduce the global plasma Debye len
lD

225lDe
221lDi

22 . For cold dust without dust-ion collision
and neglectingvJi , Eq. ~9! is equal to Eq.~27! of Meuris
et al. @12#, but without streaming. Without self-gravitation
with k2lDe

2 !1 andZi51, qd52eZd , Eq. ~9! can be writ-
ten as

v42k2@lDe
2 ~vpi

2 1vpd
2 !1vTi

2 #v21k4lDe
2 vpd

2 vTi
2

1 indivH v22k2FvTi
2 1lDe

2 vpi
2 S 12

nd0

ni0
ZdD G J 50,

~11!

which equals Eq.~21! of D’Angelo @6# if one sets theretL
5` anda50. In the latter paper, figures of growth rates f
different plasma and dust parameters can be found. W
substitutingv5 iV in the dispersion relation~9!, we obtain a
quartic equation with real coefficients, viz.,

P~V,0!1n idV@V22L#50, ~12!

where the biquadratic equationP(V,0)50 is the collision-
less dispersion relation
02640
r
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P~V,0!5@V21Avpd
2 1k2vTd

2 2vJd
2 #

3@V21Avpi
2 1k2vTi

2 2vJi
2 #

2@Avpivpd2vJivJd#
2, ~13!

and since naturallyvJi!vJd , we can calculateL as

L5vJd
2 2k2vTd

2 S 11
ni0Ti

nd0Td
D2Avpd

2 S 11
ni0Zi

nd0Zd
D 2

.

~14!

Here the following equalities are valid~for negatively
charged grains!, viz., ni0Zi5ne01nd0Zd.nd0Zd and ni0Ti
@nd0Td . Further on, the full dispersion relation~12! is de-
noted asP(V,n id)50.

For dusty plasmas with very heavy dust particles so t
(11ni0Zi /nd0Zd)vpd,vJd is satisfied, it shows thatL is
always positive. On the other hand, for lighter dust spec
that satisfy (11ni0Zi /nd0Zd)vpd.vJd , the sign ofL de-
pends on the wave number. For a dusty plasma with c
dust particles that follow the latter inequality, we introdu
the wave numberkL as

kL
2 5

vJd
2

F S 11
ni0Zi

nd0Zd
D 2

vpd
2 2vJd

2 GlDe
2

~15!

and we see thatL is negative fork.kL and positive fork
,kL . We assumek2lD

2 .k2lDi
2 !1, and hence it is clear tha

kL,vJd /cda , with cda5lDvpd being the dust-acoustic
speed. It will become clear that the dust-ion collisions exe
different influence on wave number regions separated bykL .

A. Collisionless dispersion relation

The discriminant ofP(V,0)50, the collisionless disper
sion relation, is

D* 5@A~vpi
2 2vpd

2 !1k2~vTi
2 2vTd

2 !2~vJi
2 2vJd

2 !#2

14~Avpivpd2vJivJd!
2>0, ~16!

implying that both roots inV2, viz., r ia and r da ,

r ia,da52
1

2
@A~vpi

2 1vpd
2 !1k2~vTi

2 1vTd
2 !2~vJi

2 1vJd
2 !

6AD* #, ~17!

are real; here,r ia corresponds to the1 sign andr da with the
2 sign. Obviously r ia@r da and therefore the roots o
P(v,0)50 can be approximated as

r ia.2Avpi
2 2k2vTi

2 , ~18!

r da.vJd
2 2k2~cda

2 1vTd
2 !, ~19!

and this makes it clear thatr ia and r da indeed represent the
ion-acoustic and the dust-acoustic branches, respectivel
7-2
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the dispersion relation. Whiler ia is always negative, the sig
of r da switches at the critical wave number

kcr
2 5

vJd
2

cda
2 1vTd

2
.

vJd
2

cda
2

; ~20!

thus, we haver da<0 if k>kcr and vice versar da.0 if k
,kcr @3,5#.

We pay extra attention to a dusty plasma with negligi
self-gravitational interactions, and in that special case
obtain

r ia•r da5k2@k2vTi
2 vTd

2 1A~vpi
2 vTd

2 1vpd
2 vTi

2 !#>0 ~21!

and we can conclude that in this caser da<0 holds.
We now rewrite Eq.~12! in the form

~V22r ia!~V22r da!1n idV~V22L!50, ~22!

as it is more compact and practical for further analysis. N
that r da2L is always positive because

r da2L.
1

2
@AD* 2vJd

2 2A~vpi
2 2vpd

2 !2k2~vTi
2 2vTd

2 !#.0.

~23!

B. Small and large collision frequencies

Starting from Eq.~22!, series expansions inn id for r ia ,
r da , and L can easily be determined. For smalln id , we
calculate forV.Ar ia up to first order,

V5Ar ia2
n id

2

~r ia2L!

~r ia2r da!
.Ar ia2

n id

2
, ~24!

becauseur dau,uLu!ur iau. Similarly, for V.Ar da, we ap-
proximate to first order

V5Ar da2
n id

2

~r da2L!

~r da2r ia!
.Ar da1

n id

2

~r da2L!

r ia
~25!

and we can see that the second term on the right-hand si
always real.

For negativeL the roots~in V) of P(V,6`)50 are
6 iAuLu and 0. Here, we can expand for largen id and so
calculate forV. iAuLu the first terms of the series expansio
in the small parametern id

21 ,

V5 iAuLu1
~r ia1uLu!~r da1uLu!

2n iduLu
. iAuLu1

r ia~r da1uLu!
2n iduLu

.

~26!

The expressions for positiveL are obviously very similar
and not given here. Finally, forV.0 we obtain

V.
r iar da

n idL
. ~27!

Equations~26! and ~27! are mentioned here because t
semianalytical method, which is used in the next secti
02640
e

e

is

,

requires a mathematical solution for infinite collision fr
quencies. We emphasize that in these equations, the coll
frequency is treated as a purely mathematical parameter.
ter all, the mathematical solutions for very large collisio
frequencies may not be physically meaningful, as in t
situation our basic equations are not valid anymore. Ho
ever, it is imperative to realize that the validity for realist
values of the collision frequency is not affected when
extend the use of the parametern id beyond its physical rel-
evance. Basically, we calculate the solutions for all values
the collision frequency; afterwards, the solutions for ve
largen id can be discarded.

IV. ROOTLOCUS METHOD APPLIED ON
STABILITY ANALYSIS

Equation ~22! is a full quartic equation inV that also
contains a parametern id and has trivial solutions (V,n id)
5(0,̀ ), (6 iAur iau,0), (6Ar da,0), and (6AL,`). Note
that some of these trivial roots inV can be purely imaginary
but there are no other purely imaginary roots for finite, no
zero values of the collision frequency, except for the spe
casesr da52L.0 andr da50. Becauseur iau@ur dau, we can
also see that

V52A2r ia, ~28!

with corresponding

n id52
r ia1r da

r ia1L
A2r ia.2A2r ia, ~29!

is a real and negative solution of the dispersion relati
moreover, it is a double root.

Since Eq.~22! can be written asD(V)1n idN(V)50,
whereN(V) andD(V) are polynomials in the complex vari
ableV and with real coefficients, one can always make a
called rootlocus plot@13#. This plot shows how the roots o
the dispersion relation~22! move in the complex plane asn id
increases. The roots ofN(V) are called the zeros, while th
roots of D(V) are called poles. Becausen id is a positive
parameter, the loci of the solutions of the dispersion relat
will originate in the poles and terminate in the zeros if o
increasesn id , starting from zero towards infinity. Withou
actually plotting the rootlocus, we can already derive so
of its properties by just studying the rational functio
N(V)/D(V).

The coefficients of Eq.~22! are real, and this is eventuate
in one of the general properties of rootlocus plots; viz., th
are symmetrical with respect to the real axis.

Stable solutions requireV to have a negative real part a
v5 iV; therefore, all roots located in the right half of th
complex plane can be recognized as unstable solutions.

For the dispersion relation~22!, the rootlocus plot will
cross the imaginary axis only in poles or zeros because
n idÞ0 andn idÞ` there are no purely imaginary roots, a
mentioned before. This is an important remark for the de
mination of the stability of the system.
7-3



re

c

ca
at

xi

q.

d
a
m
re
os
to
t
ls

ha

y

ri-
ol

or
ally

de-
ay
hes
ion
nt,
re

nt

ion

ions

ere
1
e

he
nd
s by

ich
1
g

if
-
of
s,

JACOBS, YAROSHENKO, AND VERHEEST PHYSICAL REVIEW E66, 026407 ~2002!
We can easily deduct which parts of the real axis cor
spond with sets of solutions (V,n id) of Eq. ~22! and are thus
part of the rootlocus plot. Therefore we rewriteD(V)
1n idN(V)50 as

11n id

) i 51
q ~V1zi !

) i 51
p ~V1pi !

50, ~30!

wherepi stand for the poles,zi for the zeros, andp andq for
the number of poles and zeros, respectively. Suppose a
tain V is real; then,

) i 51
p ~V1pi !

) i 51
q ~V1zi !

52n id,0. ~31!

Because the collision frequency is real and positive, we
calculate the complex phase angles of both sides of the l
equation, yielding

(
i 51

p

arg~V1pi !2(
i 51

q

arg~V1zi !5~2l 11!p. ~32!

Note thatV is chosen to be real here,pi is complex, and
arg(V1pi) stands for the angle between the horizontal a
and the line segment that connects2pi andV. In that geo-
metric interpretation it is easy to see that realpi located to
the left ofV have no contribution to the left-hand side of E
~32!; equivalently, it can be seen that a real polepi located to
the right ofV has a contributionp. However, complex con-
jugate polespi andpi* have no contribution to the left-han
side of Eq.~32! at all, because their phase angles cancel e
other out. The interpretation for the zeros is exactly the sa
and we can conclude that points of the rootlocus on the
axis lie to the left of an odd number of finite poles and zer
Phrased equivalently, an interval on the real axis belongs
rootlocus plot if the sum of the number of poles, located
the right of this interval, and the number of zeros, each a
located to the right of this interval, is odd.

Working with the same nomenclature it can be proved t
there aren2m asymptotes with centers, making an anglea
with the horizontal axis, where

s52
( i 51

p pi2( i 51
q zi

p2q
, ~33!

a5
~2l 11!p

p2q
, ~34!

and thus for Eq.~22! the negative real axis will be the onl
asymptote.

Furthermore, it can be proved that the plot will be ho
zontal in the poles and zeros. The starting angles in the p
(us) and the ending angles in the zeros (ue) can be calcu-
lated, using the formulas
02640
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us~pk!5
1

m F ~2l 11!p1(
j 51

q

~zj2pk!2(
i 51
iÞk

p

~pi2pk!G ,

ue~zk!5
1

m F ~2l 11!p1(
i 51

p

~pi2zk!2(
j 51
j Þk

q

~zj2zk!G ,

wherem stands for the multiplicity of the respective pole
zero. That the plots indeed start and terminate horizont
can be independently checked, starting from Eqs.~24!–~27!.

There is another class of important points needed to
termine a rootlocus unambiguously; so-called breakaw
points are points on the real axis where two or more branc
of the rootlocus depart from or arrive at. For the dispers
relation ~22! there always is at least one breakaway poi
viz., V52Aur iau. More details about breakaway points a
given in the Appendix.

For cold dust, we can make a classification for differe
configurations, depending on the signs ofL and r da . For
every configuration the poles6 iAur iau are located on the
imaginary axis and the origin is a zero. Note that a situat
with positive L and negativer da is impossible within the
assumptionklD!1. After all, negativer da requiresk.kcr
and thusvJd /vpd,klD!1. Therefore a positiveL de-
mandsk,kL , but this is impossible sincek.kcr.kL .

For dusty plasmas where the electromagnetic interact
are dominant, i.e., (11ni0Zi /nd0Zd)vpd.vJd , there are
three regions in wave number space, separated bykL and
kcr , as displayed in Table I. We repeat thatkL,kcr , as
proved earlier. On the other hand, for dusty plasmas wh
self-gravitational interactions dominate, i.e., (
1ni0Zi /nd0Zd)vpd,vJd , the analysis is independent of th
wave number and corresponds with case C.

We can qualitatively describe how the magnitude of t
dust-ion collision frequency affects the real frequency a
damping decrement of the Jeans and ion-acoustic mode
plotting the rootlocus in the possible configurations.

A. LË0, r daË0

This situation corresponds to dusty plasmas for wh
self-gravitational interactions do not prevail, viz., (
1ni0Zi /nd0Zd)vpd.vJd , and for wave numbers exceedin
the critical wave number,k.kcr5vJd /cda . The second
condition is stronger than the first condition because,
vJd /vpd,klD!1, the first condition is automatically satis
fied. We can conclude that this category is the category
dusty plasmas with negligible self-gravitational interaction
i.e., vJd!vpd .

TABLE I. Classification for different wave number regions.

k . . . kL . . . kcr . . .

L 1 0 2 2 2

r da 1 1 1 0 2

Case C B A
7-4
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For this case, all poles and zeros of Eq.~22! are located
on the imaginary axis and alternate because hereur dau,uLu
!ur iau, as can be seen in Eq.~23!. It can easily be seen now
that the entire negative real axis is part of the rootlocus p
and it also can be proved that the rootlocus plot leaves f
the poles perpendicularly to the imaginary axis and direc
towards the left half of the complex plane. Equivalently
can be shown that the rootlocus plot arrives in the ze
perpendicular with the imaginary axis and coming from t
left half of the complex plane. As stated earlier, the p
cannot cross the imaginary axis except in the poles or ze
therefore, this configuration is always stable, since the ro
locus plot is entirely located in the left half of the comple
plane. This confirms the results of D’Angelo@6#, albeit in a
more general way.

Note that statements about the stability of the system h
been made with a minimal use of rootlocus theory and w
out the need of a plot. It is only for a qualitative determin
tion of the real frequencies and damping decrements th
rootlocus plot has to be made. Qualitative and quantita
results can be found easily and rapidly for numerical
amples, using existing routines, but analytical expressi
can also be dealt with in a qualitative way, as is shown f
ther on.

For configurations withur dau,uLu,9ur dau, the rootlocus
can have multiple possibilities depending on the prec
magnitude of the parameters; i.e., the number of breaka
points cannot easily be determined without additional sp
fication of the magnitudes ofr ia , r da , andL, and therefore
a general plot is not given. For configurations 9ur dau,uLu,
there are three breakaway points and the rootlocus plo
shown in Fig. 1. Details about the determination of the nu
ber of breakaway points are given in the Appendix.

Figure 1 shows that dust-acoustic and ion-acoustic mo
initially reduce in real frequency and become damped. As
collision frequency increases they become zero-freque

FIG. 1. Rootlocus plot for wave numbersk.vJd /cda . The
crosses and circles correspond to, respectively, the poles and
of V(V22L)/(V22r ia)(V22r da), whereas the arrows are d
rected towards larger collision frequencies.
02640
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modes; subsequently, one of the ion-acoustic modes beco
completely damped while one of the dust-acoustic mo
also vanishes as it becomes zero. The remaining d
acoustic and ion-acoustic modes couple and leave the
axis again for high collision frequencies. If one plots discre
points, corresponding to fixed collision frequencies, one
see that initially~for collision frequencies that are not to
large! the modes do not deviate much from their respect
collisionless limits.

B. LË0, r daÌ0

This situation also corresponds to dusty plasmas
which self-gravitation is not having the upper hand
equivalently, (11ni0Zi /nd0Zd)vpd.vJd , but now corre-
sponds to the wave number regionkL,k,kcr .

In this configuration there are two poles (6Ar da) located
on the real axis; the remaining two poles (6 iAur iau) are
located on the imaginary axis as are all zeros (0,6 iAuLu).
The intervals@2`,2Ar da# and@0,Ar da# of the real axis are
part of the rootlocus plot; obviously, this means that th
configuration is always unstable.

The plot leaves the poles6 iAur iau towards the left and
perpendicular to the imaginary axis, and arrives in the ze
6 iAuLu from the left and also perpendicular with the imag
nary axis. Asn id increases, the unstable dust-acoustic r
Ar da moves over the real axis towards the origin and he
instability remains, but the growth rate diminishes.

The rootlocus plot of dusty plasmas in this category
shown in Fig 2. It shows that the growth rate of the unsta
Jeans mode indeed reduces with increasing collision frequ
cies; the stable Jeans mode and the ion-acoustic mode
also damped initially while their real frequency diminishe
For larger collision frequencies the ion-acoustic roots
come zero-frequency modes and there is bifurcation on
real axis; one mode becomes completely damped while
other couples with the stable dust-acoustic mode and b

ros FIG. 2. Rootlocus plot for dusty plasmas withvpd.vJd and
corresponding to wave numberskL,k,kcr .
7-5
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eventually leave the real axis again.

C. LÌ0, r daÌ0

There are two different classes of dusty plasmas resid
in this category. On the one hand, dusty plasmas with r
tively light dust species that obey (11ni0Zi /nd0Zd)vpd
.vJd and in a situationk,kL . On the other hand, dust
plasmas where self-gravitation predominates, i.e.,
1ni0Zi /nd0Zd)vpd,vJd , since klD!1 the inequalityk
,kcr5vJd /(vpdlD) is always satisfied for this case. No
that the quantitykL is meaningless in the latter situation asL
is positive over the entire wave number range.

Both classes have qualitatively similar plots. The ze
are located on the real axis as are the poles6Ar da. The poles
are always larger~in absolute value! than the zeros since Eq
~23! demonstratesL,ur iau,r da . The real intervals@2`,
2Ar da#, @2AL,0#, and@AL,Ar da# belong to the rootlocus
plot, rendering also this configuration unstable. Again, st
ing and ending angles are perpendicular to the imagin
axis; the larger poles leave toward the left half of the co
plex plane, while the smaller ones arrive along the axis
AL.

The rootlocus plot is shown in Fig. 3. The growth rate
the unstable Jeans mode also reduces until it reaches the
AL. Here one of the ion-acoustic modes will also coup
with the stable dust-acoustic mode while the other is wip
out. Note that the only difference with the previous case
the evolution for large collision frequencies and the evo
tion of the unstable root. Namely, in this class of dusty pl
mas the unstable root improves but will never be stable
n id increases.

V. CONCLUSIONS

The stability of longitudinal disturbances in sel
gravitating dusty plasmas has been investigated previo

FIG. 3. Rootlocus plot for dusty plasmas with dominating se
gravitational effects and also for the wave number regionk,kL in
dusty plasmas with relatively light dust species (vpd.vJd).
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within a collisionless model. We studied the modificatio
for the stability analysis if dust-ion collisions are include
We also illustrate qualitatively how the real frequency a
damping decrement of the ion-acoustic and Jeans mo
change over the spectrum of possible collision frequenc
using a semianalytical method called rootlocus. This meth
often used in control engineering, proves to be an enlight
ing tool for the stability analysis of our model as it ca
produce physically meaningful graphs.

It shows that dust-ion collisions reduce the growth rate
the unstable Jeans dust mode but can never overturn
gravitational instability.

On the other hand, the ion-acoustic modes are a
damped and can become zero-frequency modes when
collision frequency exceeds a certain threshold. As the inc
sion of self-gravitational effects hardly modifies the io
acoustic modes, the results of Ivlevet al. @10# are partly
reproduced and in some way generalized for the ion-acou
branch.
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APPENDIX: BREAKAWAY POINTS

Breakaway pointsbi of multiplicity m (m branches depar
and m branches arrive! are formally calculated as solution
of

F dj

dV j

N~V!

D~V!G
bi

50 ; j 51, . . . ,m21, ~A1!

which of course still obeyD(V)1n idN(V)50. Breakaway
points bi of the dispersion relation~22! are hence solutions
of

V61~r ia1r da23L!V41@L~r ia1r da!23r iar da#V
2

1r iar daL.V61r iaV41r ia~L23r da!V
2

1r iar daL50, ~A2!

with corresponding collision frequency

n id52
bi

42bi
2~r ia1r da!1r iar da

bi~bi
22L!

. ~A3!

There is always one negative breakaway point, approxima
using the obvious inequalitiesr da ,L!r ia , as

-
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~b1 ,n id!5~2A2r ia,2A2r ia!;

this is the only breakaway point for caseA if uLu,9ur dau.
Other possible breakaway points areb2 andb3, where

V5b2,352A1

2
@3r da2L6A~L2r da!~L29r da!#,

with corresponding real and positive collision frequencies
as

02640
n id.2r ia

~r da2b2,3
2 !

b2,3~b2,3
2 2L!

.

For casesA ~if 9 ur dau,uLu), B, andC, b2 is indeed a second
breakaway point; additionally, for casesA (9ur dau,uLu) and
C, b3 represents a third breakaway point.
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